google.com, pub-0288379932320714, DIRECT, f08c47fec0942fa0 GRAVIR LES MONTAGNES... EN PEINTURE: Search results for Rheasilvia
Showing posts sorted by relevance for query Rheasilvia. Sort by date Show all posts
Showing posts sorted by relevance for query Rheasilvia. Sort by date Show all posts

Wednesday, August 14, 2019

RHEASILVIA PHOTOGRAPHED BY NASA DAWN MISSION (2007-2018)



NASA DAWN MISSION (2007-2018)
Rheasilvia (22,2500 m / 22.5 km - 73,8189 ft / 14 mi) 
Currently the tallest mountain known in the Solar System 
PROTOPLANET VESTA 

About this image
The black-and-white perspective view was made by laying a global image mosaic from Dawn's survey phase (1,700 miles or 2,750 kilometers in altitude) over a topographic shape model. 
The colorized view was made by laying a color-coded height map over the topography. Red indicates higher areas and blue indicates lower areas. 
A still image showing the black-and-white view from the Rheasilvia rim, with the corresponding colorized topography image, is also included here. 
The images used to create these vistas were obtained by Dawn's framing camera from Aug. 11 to Nov. 2, 2011.

The Mountain
Rheasilvia (22,2500 m / 22.5 km - 73,8189 ft / 14 mi) is the tallest mountain known in the Solar System and the most prominent surface feature on the asteroid/ proto planet Vesta. 
Rheasilvia is thought to be an impact crater. It is 505 km (314 mi) in diameter, which is 90% the diameter of Vesta itself, and is 95% the mean diameter of Vesta. However, the mean is affected by the crater itself. It is 89% the mean equatorial diameter of 569 km (354 mi), making it one of the largest craters in the Solar System.  The crater partially obscures an earlier crater, named Veneneia, that at 395 km (245 mi) is almost as large.
Rheasilvia was discovered in Hubble Space Telescope images in 1997, but was not named until the arrival of the Dawn spacecraft in 2011.
It is named after Rhea Silvia, a mythological vestal virgin and mother of the founders of Rome, Romulus and Remus.

The Mission
Dawn is a retired space probe launched by NASA in September 2007 with the mission of studying two of the three known protoplanets of the asteroid belt, Vesta and Ceres. 
It was retired on 1 November 2018 and it is currently in an uncontrolled orbit around its second target, the dwarf planet Ceres. 
Dawn is the first spacecraft to orbit two extraterrestrial bodies, the first spacecraft to visit either Vesta or Ceres, and the first to visit a dwarf planet, arriving at Ceres in March 2015, a few months before New Horizons flew by Pluto in July 2015.
Dawn entered orbit around Vesta on July 16, 2011, and completed a 14-month survey mission before leaving for Ceres in late 2012.It then entered orbit around Ceres on March 6, 2015.
NASA considered, but decided against, a proposal to visit a third target.
On October 19, 2017, NASA announced that the mission would be extended until the probe's hydrazine fuel supply was used up
On November 1, 2018, NASA announced that the Dawn spacecraft had finally exhausted all of its hydrazine fuel, thus ending its mission. The satellite is currently in an uncontrolled state about Ceres.
The Dawn mission was managed by NASA's Jet Propulsion Laboratory, with spacecraft components contributed by European partners from Italy, Germany, France, and the Netherlands. It was the first NASA exploratory mission to use ion propulsion, which enabled it to enter and leave the orbit of two celestial bodies. Previous multi-target missions using conventional drives, such as the Voyager program, were restricted to flybys.

___________________________________________
2019 - Wandering Vertexes...
by Francis Rousseau 

Tuesday, February 8, 2022

AEOLIS MONS OR MOUNT SHARP BY NASA CURIOSITY MISSION

 

NASA CURIOSITY MISSION (since 2012) Aeolis Mons or Mount Sharp (5, 500 m - 18, 000 ft) Mars  In at the base of Aeolis Mons on Mars (23 August 2012)

NASA CURIOSITY MISSION (since 2012)
Aeolis Mons or Mount Sharp (5, 500 m - 18, 000 ft)
Mars

From "At the base of Aeolis Mons on Mars ", photo, 23 August 2012


The mountain
Aeolis Mons (5, 500 m - 18, 000 ft) also called Mount Sharp is a mountain on the surface of the planet Mars. It forms the central peak within Gale crater and is located around 5.08°S 137.85°E, rising 5.5 km (18,000 ft) high from the valley floor. Aeolis Mons is about the same height as Mons Huygens, the tallest lunar mountain, and taller than Mons Hadley visited by Apollo 15. The tallest mountain known in the Solar System is in Rheasilvia crater on the asteroid Vesta, which contains a central mound that rises 22 km or 22.000 m - 14 mi or 72,000 ft high.
Olympus Mons on Mars is nearly the same height, at 21.9 km (13.6 mi; 72,000 ft) high.
In comparison, Mount Everest / Chomolunga rises to 8.8 km -29,000 ft altitude above sea level, but is only 4.6 km - 15,000 ft base-to-peak. Africa's Mount Kilimanjaro is about 5.9 km - 19,000 ft altitude above sea level also 4.6 km base-to-peak. America's Denali, also known as Mount McKinley, has a base-to-peak of 5.5 km -18,000 ft. The Franco-Italian Mont Blanc/Monte Bianco is 4.8 km -16,000 ft in altitude above sea level. Mount Fuji, which overlooks Tokyo, Japan, is about 3.8 km -12,000 ft altitude. Compared to the Andes, Aeolis Mons would rank outside the hundred tallest peaks, being roughly the same height as Argentina's Cerro Pajonal; the peak is higher than any above sea level in Oceania, but base-to peak it is considerably shorter than Hawaii's Mauna Kea and its neighbors.
Discovered in the 1970s by NAS, the mountain remained nameless for perhaps 40 years. When it became a likely landing site, it was given various labels; for example, in 2010 a NASA photo caption called it "Gale crater mound". In March 2012, NASA unofficially named it "Mount Sharp", for American geologist Robert P. Sharp. The International Astronomical Union, which is responsible for planetary nomenclature for its participants, names large Martian mountains after the Classical albedo feature in which it is located, not for people. In May 2012 the IAU thus named the mountain Aeolis Mons, and gave the name Aeolis Palus to the crater floor plain between the northern wall of Gale and the northern foothills of the mountain. Despite the official name, NASA and the ESA continue to refer to the mountain as "Mount Sharp" in press conferences and press releases
Aeolis is the ancient name of the Izmir region in western Turkey.

The NASA mission
On August 6, 2012, Curiosity (the Mars Science Laboratory rover) landed in "Yellowknife" Quad of Aeolis Palus, next to the mountain. NASA named the landing site Bradbury Landing on August 22, 2012. Aeolis Mons is a primary goal for scientific study.
On June 5, 2013, NASA announced that Curiosity would begin a 8 km (5.0 mi) journey from the Glenelg area to the base of Aeolis Mons.
On November 13, 2013, NASA announced that an entryway Curiosity would traverse on its way to Aeolis Mons was to be named "Murray Buttes", in honor of planetary scientist Bruce C. Murray (1931–2013). The trip was expected to take about a year and would include stops along the way to study the local terrain.
On September 11, 2014, NASA announced that the Curiosity rover had reached Aeolis Mons, the rover mission's long-term prime destination.
On October 5, 2015, possible recurrent slope lineae, wet brine flows, were reported on Mount Sharp near Curiosity.
As of January 20, 2017, Curiosity has been on the planet Mars for 1585 sols (1628 days) since landing on August 6, 2012. 

___________________________________________
2022 - Wandering Vertexes...
by Francis Rousseau


Friday, January 27, 2017

AEOLIS MONS BY NASA CURIOSITY MISSION





NASA CURIOSITY MISSION (since 2012)
Aeolis Mons or Mount Sharp (5, 500 m - 18, 000 ft)
Mars  

3 pictures of Aeolis Mons taken by NASA Curiosity Rover & Curiosity team : 
1. Aeolis Mons photographed by  Curiosity Rover on September 9, 2012
2. Aeolis Mons photographed by Curiosity Rover on September 20, 2012
3.  Aeolis Mons photographed  by Curiosity Rover on August 6, 2012

(Click images to enlarge)  

The mountain
Aeolis Mons (5, 500 m - 18, 000 ft) also called Mount Sharp is a mountain on the surface of the planet Mars. It forms the central peak within Gale crater and is located around 5.08°S 137.85°E, rising 5.5 km (18,000 ft) high from the valley floor. Aeolis Mons is about the same height as Mons Huygens, the tallest lunar mountain, and taller than Mons Hadley visited by Apollo 15. The tallest mountain known in the Solar System is in Rheasilvia crater on the asteroid Vesta, which contains a central mound that rises 22 km  or 22.000 m - 14 mi or 72,000 ft high.
Olympus Mons on Mars is nearly the same height, at 21.9 km (13.6 mi; 72,000 ft) high.
In comparison, Mount Everest / Chomolunga rises to 8.8 km -29,000 ft altitude above sea level, but is only 4.6 km - 15,000 ft  base-to-peak. Africa's Mount Kilimanjaro is about 5.9 km - 19,000 ft altitude above sea level  also 4.6 km base-to-peak. America's Denali, also known as Mount McKinley, has a base-to-peak of 5.5 km -18,000 ft.  The Franco-Italian Mont Blanc/Monte Bianco is 4.8 km -16,000 ft in altitude above sea level.  Mount Fuji, which overlooks Tokyo, Japan, is about 3.8 km -12,000 ft altitude. Compared to the Andes, Aeolis Mons would rank outside the hundred tallest peaks, being roughly the same height as Argentina's Cerro Pajonal; the peak is higher than any above sea level in Oceania, but base-to peak it is considerably shorter than Hawaii's Mauna Kea and its neighbors.
Discovered in the 1970s by NAS,  the mountain remained nameless for perhaps 40 years. When it became a likely landing site, it was given various labels; for example, in 2010 a NASA photo caption called it "Gale crater mound".  In March 2012, NASA unofficially named it "Mount Sharp", for American geologist Robert P. Sharp. The International Astronomical Union, which is responsible for planetary nomenclature for its participants, names large Martian mountains after the Classical albedo feature in which it is located, not for people. In May 2012 the IAU thus named the mountain Aeolis Mons, and gave the name Aeolis Palus to the crater floor plain between the northern wall of Gale and the northern foothills of the mountain. Despite the official name, NASA and the ESA continue to refer to the mountain as "Mount Sharp" in press conferences and press releases
Aeolis is the ancient name of the Izmir region in western Turkey.

The NASA mission 
On August 6, 2012, Curiosity (the Mars Science Laboratory rover) landed in "Yellowknife" Quad of Aeolis Palus, next to the mountain. NASA named the landing site Bradbury Landing on August 22, 2012. Aeolis Mons is a primary goal for scientific study.
 On June 5, 2013, NASA announced that Curiosity would begin a 8 km (5.0 mi) journey from the Glenelg area to the base of Aeolis Mons.
On November 13, 2013, NASA announced that an entryway Curiosity would traverse on its way to Aeolis Mons was to be named "Murray Buttes", in honor of planetary scientist Bruce C. Murray (1931–2013). The trip was expected to take about a year and would include stops along the way to study the local terrain.
On September 11, 2014, NASA announced that the Curiosity rover had reached Aeolis Mons, the rover mission's long-term prime destination.
On October 5, 2015, possible recurrent slope lineae, wet brine flows, were reported on Mount Sharp near Curiosity.
As of January 20, 2017, Curiosity has been on the planet Mars for 1585 sols (1628 days) since landing on August 6, 2012. 
Sources: