google.com, pub-0288379932320714, DIRECT, f08c47fec0942fa0 GRAVIR LES MONTAGNES... EN PEINTURE: CERAUNIUS THOLUS SEEN BY NASA MARS GLOBAL SURVEYOR

Saturday, November 4, 2017

CERAUNIUS THOLUS SEEN BY NASA MARS GLOBAL SURVEYOR




NASA MARS GLOBAL SURVEYOR  (1996-2007) 
Ceraunius Tholus (5,500 m  / 5, 5 km - 18,044 ft  / 3,4 mi)
MARS

1. In View of Ceraunius Tholus (left) and Uranius Tholus (right)Mars Orbiter Camera of 
Mars Global Surveyor, 2002
2.    In The volcanoes Ceraunius Tholus (left) and Uranius Tholus (right) showed by 
THEMIS daytime infrared image mosaic, 2012


The mountain 
Ceraunius Tholus (5,500 m -  )is a volcano on Mars located in the Tharsis quadrangle at 24.25° north latitude and 262.75° east longitude, part of the Uranius group of volcanoes. It is 130 km across, 5.5 km high and is named after a classical albedo feature name.
Ceraunius Tholus is on the Tharsis rise, also called the Tharsis bulge. Tharsis is a land of great volcanoes. Olympus Mons is the tallest known volcano. Ascraeus Mons and Pavonis Mons are at least 320 km across and are over 10 km above the plateau that they sit on. The plateau is five to four seven kilometers above the zero altitude of Mars.
Ceranius Tholus is generally believed to be a basaltic shield with the lower part buried beneath plain forming lavas. Earlier interpretations suggested that it is a stratovolcano.  The slopes on Ceraunius Tholus are quite steep with an average slope of 8° with many radial erosion channels and pitted valleys extending from just below the rim of the caldera toward the base of the volcano. The current view is that the valleys were eroded by water.  Interesting features on Ceraunius Tholus are three large canyons at the northwest flank of Ceraunius Tholus which are up to 2.5 km wide and 300 m deep. The biggest of these three also appears to be the youngest and protrude from the lowest point of the volcanic caldera and ends at the interesting crater Rahe (an oblique impact crater with measures of 35 Ч 18 km), just north from the volcano where it formed a depositional fan. Its origin is still debatable and there are four main models proposed: fluvial action, volcanic flows, valley being a lava channel or some combination of previously mentioned models.
Ceraunius appears small compared to other larger volcanoes, but it is almost as tall as Earth's Mount Everest. The caldera of Ceranius Tholus is also dotted with many collapse pits, which are distinct from impact craters as they have no rim and vary in abundance across the caldera. Ceraunius Tholus is probably late Hesperian in age.
Some scientists believe that glaciers may have existed on many of the volcanoes in Tharsis including Olympus Mons, Ascraeus Mons, and Pavonis Mons.  Ceraunius Tholus may have even had its glaciers melt to form some temporary lakes in the past. The smoothness and flatness of the Ceraunius Tholus caldera floor suggests that in the past meltwater accumulated in a caldera lake.

The mission
Mars Global Surveyor (MGS) was an American robotic spacecraft developed by NASA's Jet Propulsion Laboratory and launched November 7, 1996. Mars Global Surveyor was a global mapping mission that examined the entire planet, from the ionosphere down through the atmosphere to the surface.  As part of the larger Mars Exploration Program, Mars Global Surveyor performed monitoring relay for sister orbiters during aerobraking, and it helped Mars rovers and lander missions by identifying potential landing sites and relaying surface telemetry.
It completed its primary mission in January 2001 and was in its third extended mission phase when, on 2 November 2006, the spacecraft failed to respond to messages and commands. A faint signal was detected three days later which indicated that it had gone into safe mode. Attempts to recontact the spacecraft and resolve the problem failed, and NASA officially ended the mission in January 2007.
The Mars Orbiter Camera (MOC) science investigation used 3 instruments: a narrow angle camera that took (black-and-white) high resolution images (usually 1.5 to 12 m per pixel) and red and blue wide angle pictures for context (240 m per pixel) and daily global imaging (7.5 km per pixel). MOC returned more than 240,000 images spanning portions of 4.8 Martian years, from September 1997 and November 2006.[6] A high resolution image from MOC covers a distance of either 1.5 or 3.1 km long. Often, a picture will be smaller than this because it has been cut to just show a certain feature. These high resolution images may cover features 3 to 10 km long. When a high resolution image is taken, a context image is taken as well. The context image shows the image footprint of the high resolution picture. Context images are typically 115.2 km square with 240 m/pixel resolution.
Source: 
- NASA data base on MGS