google.com, pub-0288379932320714, DIRECT, f08c47fec0942fa0 GRAVIR LES MONTAGNES... EN PEINTURE: Irnini Mons
Showing posts with label Irnini Mons. Show all posts
Showing posts with label Irnini Mons. Show all posts

Tuesday, October 10, 2017

IRNINI MONS BY NASA MAGELLAN MISSION


NASA MAGELLAN MISSION (1989-1994)
Irnini Mons (1,750 m -  5,741ft) 
Venus 

The mountain 
Irnini Mons (1,750 m -  5,741ft) is a volcanic structure on the planet Venus, and is named after the Assyro-Babylonian goddess of cedar-tree mountains.  It has a diameter of 475 km (295 mi) and is located in Venus' northern hemisphere. More specifically, it is located in the central Eistla Regio region at (14°0′N 16°0′E) in the V-20 quadrangle. Sappho Patera, a 225 km (140 mi) diameter wide, caldera-like, depression tops the summit of Irnini Mons.  The primary structural features surrounding Irnini Mons are graben, seen as linear depressed sections of rock, radiating from the central magma chamber. Also, concentric, circular ridges and graben outline the Sappho Patera depression at the summit. The volcano is crossed by various rift zones, including the north-south trending Badb Linea rift, the Guor Linea rift extending to the northwest, and the Virtus Linea rift continuing to the southeast.
The combination of volcanic-tectonic structures around Irnini Mons supports varying intensities of deformation and a multi-directional stress history. Although classified as a shield volcano, Irnini Mons contains many elements of the Venusian coronae, bringing speculation to its formation. If Irnini Mons was originally a corona, a shallow oval-shaped depression, it would support a thin lithosphere on Venus. On the other hand, it being a shield volcano supports the theory of a thicker lithosphere and Irnini Mons' stress history could be summarized simply as a transition from predominantly compressive forces to extensional relaxation, resulting in the observed radiating graben and concentric ridges.
Irnini Mons is a significant structural feature on Venus because the preservation of the geology allows for the analysis of Venus' regional stress orientation in response to a pressurized magma chamber over time.

The mission
Magellan was launched on May 4, 1989, at 18:46:59 UTC by the National Aeronautics and Space Administration from KSC Launch Complex 39B at the Kennedy Space Center in Florida, aboard Space Shuttle Atlantis during mission STS-30. Once in orbit, the Magellan and its attached Inertial Upper Stage booster were deployed from Atlantis and launched on May 5, 1989 01:06:00 UTC, sending the spacecraft into a Type IV heliocentric orbit where it would circle the Sun 1.5 times, before reaching Venus 15 months later on August 10, 1990.
Originally, the Magellan had been scheduled for launch in 1988 with a trajectory lasting six months. However, due to the Space Shuttle Challenger disaster in 1986, several missions, including Galileo and Magellan, were deferred until shuttle flights resumed in September 1988. Magellan was planned to be launched with a liquid-fueled, Centaur-G upper-stage booster, carried in the cargo bay of the Space Shuttle. However, the entire Centaur-G program was canceled after the Challenger disaster, and the Magellan probe had to be modified to be attached to the less-powerful Inertial Upper Stage. The next best opportunity for launching occurred in October 1989.
Further complicating the launch however, was the launching of the Galileo mission to Jupiter, one that included a fly-by of Venus. Intended for launch in 1986, the pressures to ensure a launch for Galileo in 1989, mixed with a short launch-window necessitating a mid-October launch, resulted in replanning the Magellan mission. Weary of rapid shuttle launches, the decision was made to launch Magellan in May, and into an orbit that would require one year, three months, before encountering Venus.
On August 7, 1990, Magellan encountered Venus and began the orbital insertion maneuver which placed the spacecraft into a three-hour, nine minute, elliptical orbit that brought the spacecraft 295-kilometers from the surface at about 10 degrees North during the periapsis and out to 7762-kilometers during apoapsis
On September 9, 1994, a press release outlined the termination of the Magellan mission. Due to the degradation of the power output from the solar arrays and onboard components, and having completed all objectives successfully, the mission was to end in mid-October. The termination sequence began in late August 1994, with a series of orbital trim maneuvers which lowered the spacecraft into the outermost layers of the Venusian atmosphere to allow the Windmill experiment to begin on September 6, 1994.