google.com, pub-0288379932320714, DIRECT, f08c47fec0942fa0 GRAVIR LES MONTAGNES... EN PEINTURE: - EXTRATERRESTRIAL PEAKS
Showing posts with label - EXTRATERRESTRIAL PEAKS. Show all posts
Showing posts with label - EXTRATERRESTRIAL PEAKS. Show all posts

Sunday, December 2, 2018

ALBOR THOLUS BY NASA MARS ODYSSEY



NASA MARS ODYSSEY (2001- 2010/2025)
Albor Tholus  (4,500m /14,764 ft- 4, 5 km/ 2, 79 mi) 
Mars

The Mountain 
Albor Tholus  (4,500m /14,764 ft- 4, 5 km/ 2, 79 mi)  is an extinct volcano in the volcanic province Elysium on Mars. It lies south of the neighbouring volcanoes Elysium Mons and Hecates Tholus. Albor Tholus is 4.5 kilometres high and has a diameter of 160 km at its base. Its large caldera, having a diameter of 30 km and a depth of 3 km, is deep compared to calderas on the Earth. The elevation of the lowest level of the caldera is the same as the base of the volcano; however, the original lower slopes of Albor Tholus may have been covered by lava flows from its larger neighbor, Elysium Mons. Evaluations by the Mars probe Mars Express found that the volcanoes of the Elysium region were active over long periods.
 
The Mission 
NASA Mars Odyssey was launched April 7, 2001, on a Delta II rocket from Cape Canaveral Air Force Station, and reached Mars orbit on October 24, 2001, at 02:30 UTC (October 23, 19:30 PDT, 22:30 EDT). By December 15, 2010, it broke the record for longest serving spacecraft at Mars, with 3,340 days of operation. It is currently in a polar orbit around Mars with a semi-major axis of about 3,800 km or 2,400 miles. It has enough propellant to function until 2025.
Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment.  It is hoped that the data Odyssey obtains will help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Mars Exploration Rovers, Mars Science Laboratory, and previously the Phoenix lander to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of 2001: A Space Odyssey.
_______________________________
2018 - Wandering Vertexes...
by Francis Rousseau 

Wednesday, November 7, 2018

MONS VINOGRADOV BY NASA APOLLO 17 MISSION


http://wanderingvertexes.blogspot.com

NASA APOLLO 17 MISSION ( 1972) 
Mons Vinogradov  (1, 400 m  / 1, 4 km - 4, 593ft / 0,86 mi)
The Moon 

 In Mons Vinogradov seen  from Apollo 17 spaceship during the Moon approach, 1972, Arizona State University, 
Apollo Image Archive

The mountain 
Mons Vinogradov  (1, 400 m  / 1, 4 km - 4, 593ft / 0,86 mi) is a rugged massif that is located on the lunar mare where Oceanus Procellarum to the southwest joins Mare Imbrium to the east. There are three primary peaks in this formation, which rise to altitudes of 1.0–1.4 km above the surface. To the east of this rise is the crater Euler, and to the southeast is an area of rugged ground that reaches the Montes Carpatus range. The Carpatus mountain range forms the southwest boundary of the Mare Imbrium.
The selenographic coordinate of Mons Vinogradov is 22.4 N, 32.4 W, and it has a maximum diameter of 25 km at the base. It was named after Aleksandr P. Vinogradov. This mountain was formerly named Euler Beta (β), or Mons Euler.
In the rugged ground just to the southeast of this mountain is a set of tiny craters that have been assigned names by the IAU. These are listed in the table below.

The mission
Apollo 17 was the final mission of NASA's Apollo program.
Launched at 12:33 a.m. Eastern Standard Time (EST) on December 7, 1972, with a crew made up of Commander Eugene Cernan, Command Module Pilot Ronald Evans, and Lunar Module Pilot Harrison Schmitt, it was the last use of Apollo hardware for its original purpose; after Apollo 17, extra Apollo spacecraft were used in the Skylab and Apollo–Soyuz programs.
Apollo 17 was the first night launch of a U.S. human spaceflight and the final manned launch of a Saturn V rocket. It was a "J-type mission" which included three days on the lunar surface, extended scientific capability, and the third Lunar Roving Vehicle (LRV). While Evans remained in lunar orbit in the Command/Service Module (CSM), Cernan and Schmitt spent just over three days on the Moon in the Taurus–Littrow valley and completed three moonwalks, taking lunar samples and deploying scientific instruments. Evans took scientific measurements and photographs from orbit using a Scientific Instruments Module mounted in the Service Module.
The landing site was chosen with the primary objectives of Apollo 17 in mind: to sample lunar highland material older than the impact that formed Mare Imbrium, and investigate the possibility of relatively new volcanic activity in the same area.  Cernan, Evans and Schmitt returned to Earth on December 19 after a 12-day mission.
Apollo 17 is the most recent manned Moon landing and the most recent time humans travelled beyond low Earth orbit.  It was also the first mission to have no one on board who had been a test pilot; X-15 test pilot Joe Engle lost the lunar module pilot assignment to Schmitt, a scientist. 
The mission broke several records: the longest moon landing, longest total extravehicular activities (moonwalks),  largest lunar sample, and longest time in lunar orbit.
_______________________________
2018 - Wandering Vertexes...
by Francis Rousseau 

Saturday, October 6, 2018

ELYSIUM MONS BY NASA MARS ODYSSEY

http://wanderingvertexes.blogspot.com


NASA MARS ODYSSEY  (2001- 2010/2025) 
Elysium Mons  (13,900m / 13, 9km - 46,000 ft / 8,6 mi)
MARS


The Mountain 
Elysium Mons  (13,900m / 13, 9km - 46,000 ft / 8,6 mi) is a volcano on Mars located in the volcanic province Elysium, at 25.02°N 147.21°E, in the Martian eastern hemisphere. It stands about  above the surrounding lava plains, and about 16 km (52,000 ft) above the Martian datum. Its diameter is about 240 km (150 mi), with a summit caldera about 14 km (8.7 mi) across. It is flanked by the smaller volcanoes Hecates Tholus to the northeast, and Albor Tholus to the southeast.
A 6.5 km diameter crater at 29.674 N, 130.799 E, in the volcanic plains to the northwest of Elysium Mons has been identified as a possible source for the nakhlite meteorites, a family of similar basaltic Martian meteorites with cosmogenic ages of about 10.7 Ma, suggesting ejection from Mars by a single impact event. This implies that Martian volcanism had slowed greatly by that point in history.

The Mission 
NASA Mars Odyssey was launched April 7, 2001, on a Delta II rocket from Cape Canaveral Air Force Station, and reached Mars orbit on October 24, 2001, at 02:30 UTC (October 23, 19:30 PDT, 22:30 EDT). By December 15, 2010, it broke the record for longest serving spacecraft at Mars, with 3,340 days of operation. It is currently in a polar orbit around Mars with a semi-major axis of about 3,800 km or 2,400 miles. It has enough propellant to function until 2025.
Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment.  It is hoped that the data Odyssey obtains will help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Mars Exploration Rovers, Mars Science Laboratory, and previously the Phoenix lander to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of 2001: A Space Odyssey.

Monday, August 27, 2018

TENZING MONTES BY NASA NEW HORIZONS


NASA NEW HORIZONS (2006-2019...)
Tenzing Montes (6, 200m / 6.2km - 20, 344ft / 3.9 mi)
PLUTO
 About image
This close-up image of a Tenzing Montes near Pluto’s equator captured by NASA’s New Horizons spacecraft on July 14, 2015 reveals a range of youthful mountains  above the surface of the dwarf planet. This iconic image of the mountains, informally named Norgay Montes (Norgay Mountains) was captured about 1 ½ hours before New Horizons’ closest approach to Pluto, when the craft was 47,800 miles (77,000 kilometers) from the surface of the icy body.  The star in the foreground is the Sun, Pluto  being the  farthest planet from the sun of our solar system.

The mountains
The Tenzing Montes (6, 200m / 6.2km - 20, 344ft / 3.9 mi) formerly Norgay Montes are icy mountains, near the Hillary Montes, bordering the southwest region of Sputnik Planitia in the south of Tombaugh Regio (or the part of Tombaugh Regio south of the equator).  They are the highest mountain range on Pluto, and also the steepest, with a mean slope of 19.2 degrees.
The mountains, first viewed by the New Horizons spacecraft on 14 July 2015, and announced by NASA on 15 July 2015, are named after the Nepalese mountaineer Tenzing Norgay, who, along with Sir Edmund Hillary, made the first successful ascent of the highest peak on Earth, Mount Everest (29 May 1953). The mountains were informally called Norgay Montes by the New Horizons team, but that name was later changed from Norgay to Tenzing. On 7 September 2017, the name Tenzing Montes was officially approved together with the names of Tombaugh Regio and twelve other nearby surface features.
The Tenzing Montes rise up to 6.2 km (3.9 mi) high, about twice as high as the Hillary Montes. In comparison, Mount Everest rises 4.6 km (2.9 mi) base-to-peak though to an altitude of 8.8 km (5.5 mi) above sea level making it the highest peak on earth.

The space mission
New Horizons is an interplanetary space probe that was launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by S. Alan Stern,  the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow. It is the fifth artificial object to achieve the escape velocity needed to leave the Solar System.
Most of the post-Jupiter voyage was spent in hibernation mode to preserve on-board systems, except for brief annual checkouts. On December 6, 2014, New Horizons was brought back online for the Pluto encounter, and instrument check-out began. On January 15, 2015, the New Horizons spacecraft began its approach phase to Pluto.
On July 14, 2015, at 11:49 UTC, it flew 12,500 km (7,800 mi) above the surface of Pluto, making it the first spacecraft to explore the dwarf planet. On October 25, 2016, at 21:48 UTC, the last of the recorded data from the Pluto flyby was received from New Horizons. Having completed its flyby of Pluto,  New Horizons has maneuvered for a flyby of Kuiper belt object (486958) 2014 MU69, expected to take place on January 1, 2019, when it will be 43.4 AU from the Sun.
In August 2018, NASA confirmed, based on results by Alice on the New Horizons spacecraft, of a "hydrogen wall" at the outer edges of the Solar System that was first detected in 1992 by the two Voyager spacecraft.

Thursday, July 12, 2018

AKNA MOUNTES BY NASA MAGELLAN MISSION



NASA MAGELLAN MISSION (1989-1994) 
Akna Mountes (6,000 m / 6km - 19, 685ft / 3, 72mi)
VENUS

The mountain
Akna Montes are a mountain range on Venus centered at 68.9°N, 318.2°E and stretching 830 km long. It is culminating at 6,000 m / 6km -  19, 685ft / 3, 72mi). The Akna range is a north-south trending ridge belt that forms the western border of the elevated smooth plateau of Lakshmi Planum. The Lakshmi plateau plains are formed by extensive volcanic eruptions and are bounded by mountain chains on all sides. The plains appear to be deformed near the mountains. This suggests that some of the mountain building activity occurred after the plains formed. On the Magellan radar image  (above) of the northern portion of the Akna Montes, the round feature is the crater Wanda.

The mission
Magellan was launched on May 4, 1989, at 18:46:59 UTC by the National Aeronautics and Space Administration from KSC Launch Complex 39B at the Kennedy Space Center in Florida, aboard Space Shuttle Atlantis during mission STS-30. Once in orbit, the Magellan and its attached Inertial Upper Stage booster were deployed from Atlantis and launched on May 5, 1989 01:06:00 UTC, sending the spacecraft into a Type IV heliocentric orbit where it would circle the Sun 1.5 times, before reaching Venus 15 months later on August 10, 1990.
Originally, the Magellan had been scheduled for launch in 1988 with a trajectory lasting six months. However, due to the Space Shuttle Challenger disaster in 1986, several missions, including Galileo and Magellan, were deferred until shuttle flights resumed in September 1988. Magellan was planned to be launched with a liquid-fueled, Centaur-G upper-stage booster, carried in the cargo bay of the Space Shuttle. However, the entire Centaur-G program was canceled after the Challenger disaster, and the Magellan probe had to be modified to be attached to the less-powerful Inertial Upper Stage. The next best opportunity for launching occurred in October 1989.
Further complicating the launch however, was the launching of the Galileo mission to Jupiter, one that included a fly-by of Venus. Intended for launch in 1986, the pressures to ensure a launch for Galileo in 1989, mixed with a short launch-window necessitating a mid-October launch, resulted in replanning the Magellan mission. Weary of rapid shuttle launches, the decision was made to launch Magellan in May, and into an orbit that would require one year, three months, before encountering Venus.
On August 7, 1990, Magellan encountered Venus and began the orbital insertion maneuver which placed the spacecraft into a three-hour, nine minute, elliptical orbit that brought the spacecraft 295-kilometers from the surface at about 10 degrees North during the periapsis and out to 7762-kilometers during apoapsis
On September 9, 1994, a press release outlined the termination of the Magellan mission. Due to the degradation of the power output from the solar arrays and onboard components, and having completed all objectives successfully, the mission was to end in mid-October. The termination sequence began in late August 1994, with a series of orbital trim maneuvers which lowered the spacecraft into the outermost layers of the Venusian atmosphere to allow the Windmill experiment to begin on September 6, 1994.



Tuesday, June 5, 2018

MONS HADLEY BY NASA APOLLO 15 MISSION



NASA APOLLO 15 MISSION (July, 26, 1971- August  7, 1971)
Mons Hadley (4,600m -15,091ft) 
The Moon 

 From Apollo 15 Hasselblad image for film magazine 87/KK

The mountain
Mons Hadley (4,600m / 4, 6 km -15,091ft )is  the second highest mountain on the Moon, the first being Mons Huyghens (5, 500m - 18,044ft.  Mons Hadley is a massif in the northern portion of the Montes Apenninus, a range in the northern hemisphere of the Moon. The selenographic coordinates of this peak are  26.5° N, 4.7° E. It has a maximum diameter of 25 km at the base.
To the southwest of this mountain is a valley that served as the landing site for the Apollo 15 expedition. To the southwest of this same valley is the slightly smaller Mons Hadley Delta (δ) peak with a height of about 3.5 km. The coordinates of this peak are 25.8° N, 3.8° E. To the west of these peaks is the sinuous Rima Hadley rille where the Fallen Astronaut memorial has been placed in memory of those astronauts who died in the advancement of space exploration.
These features were named after John Hadley.
This sinuous lunar rille follows a course generally to the northeast, toward the Mons Hadley peak, for which it is named. This feature is centered at selenographic coordinates 25.0° N, 3.0° E, and lies within a diameter of 80 km. It begins at the crater Béla, an elongated formation with the long axis oriented to the northwest.

The mission 
Apollo 15 was the ninth manned mission in the United States' Apollo program, the fourth to land on the Moon, and the eighth successful manned mission. It was the first of what were termed
"J missions", long stays on the Moon, with a greater focus on science than had been possible on previous missions. It was also the first mission on which the Lunar Roving Vehicle was used.
The mission began on July 26, 1971, and ended on August 7. At the time, NASA called it the most successful manned flight ever achieved.
Commander David Scott and Lunar Module Pilot James Irwin spent three days on the Moon, including 18Ѕ hours outside the spacecraft on lunar extra-vehicular activity (EVA). The mission landed near Hadley rille, in an area of the Mare Imbrium called Palus Putredinus (Marsh of Decay). The crew explored the area using the first lunar rover, which allowed them to travel much farther from the Lunar Module (LM) than had been possible on missions without the rover. They collected 77 kilograms (170 lb) of lunar surface material. At the same time, Command Module Pilot Alfred Worden orbited the Moon, using a Scientific Instrument Module (SIM) in the Service Module (SM) to study the lunar surface and environment in great detail with a panoramic camera, a gamma-ray spectrometer, a mapping camera, a laser altimeter, a mass spectrometer, and a lunar sub-satellite deployed at the end of Apollo 15's stay in lunar orbit (an Apollo program first).
The mission successfully accomplished its objectives. Ironically, this mission was one of very few that had been honored with the issue of a commemorative US stamp, with this first use of a lunar rover happening one decade after the first Mercury astronaut launch.

Tuesday, May 1, 2018

THE THREE THARSIS MONTES BY NASA VIKING 1 ORBITER



NASA VIKING PROGRAM (1975-1982) 
The three Tharsis Montes:
Ascraeus Mons (18, 225m / 18, 1 kms - 50, 793 ft / 11, 1mi)  
Pavonis Mons (14, 000m / 14km - 46, 000ft / 8,7 mi) 
Arsia Mons (17, 761 m  17 / - 58, 721ft / 11 mi)
MARS 

1. The Three Tharsis montes  photographed in 1980 by Viking1 orbiter 
2. Arsia Mons,  Viking mosaic showing the massive side lobes on the southwest (top) and northeast (bottom) sides of the volcano

The volcanoes 
The three Tharsis Montes (Fountains mountains in latin) are three large shield volcanoes in the Tharsis region of the planet Mars. From north to south (up to down on the image), the volcanoes are:  : Ascraeus Mons,  Pavonis Mons and Arsia Mons named by Giovanni Schiaparelli after the legendary Roman forest of Arsia Silva.
Arsia Mons (17, 761 m  17 / - 58, 721ft / 11 mi) is the southernmost of three volcanos (collectively known as Tharsis Montes) on the Tharsis bulge near the equator of the planet Mars, the tallest volcano in the solar system, Olympus Mons, is to its northwest.
Arsia Mons (down left on the  first photo) is a shield volcano with a relatively low slope and a massive caldera at its summit.
The three Tharsis Montes, together with some smaller volcanoes to the north, form a rather straight line. It has been proposed that these are the result of plate tectonics, which on Earth makes chains of "hot spot" volcanoes.
The Tharsis Montes volcanoes lie near the equator, along the crest of a vast volcanic plateau called the Tharsis region or Tharsis bulge.
The three Tharsis Montes volcanoes are evenly spaced about 700 km (430 mi) apart from peak to peak, in a line oriented southwest-northeast. This alignment is unlikely to be coincidental.

The mission 
Viking 1 Orbiter color mosaic of the eastern Tharsis region on Mars. At left, from top to bottom, are the three 25 km high volcanic shields, Ascraeus Mons, Pavonis Mons, and Arsia Mons. The shield at upper right is Tharsis Tholus. The canyon system at lower right is Noctis Labyrinthus, the westernmost extension of Valles Marineris. The smooth area at bottom center is Syria Planum. The distance between the calderas of Ascraeus and Pavonis Mons is 800 km. North is up. The images used to produce this mosaic were taken during orbit 1334 on 22 February 1980.

___________________________________________
2018 - Wandering Vertexes...
by Francis Rousseau 

Wednesday, April 4, 2018

PAVONIS MONS BY NASA MARS GLOBAL SURVEYOR







 NASA MARS GLOBAL SURVEYOR  (1996-2007), 
Pavonis Mons (14,000m / 14km - 46,000ft / 8,7 mi) 
MARS

The mountain 
Pavonis Mons (14,000m / 14km - 46,000ft / 8,7 mi)  latin for "peacock mountain" is a large shield volcano located in the Tharsis region of the planet Mars. It is the middle member of a chain of three volcanic mountains (collectively known as the Tharsis Montes) that straddle the Martian equator between longitudes 235°E and 259°E. The volcano was discovered by the Mariner 9 spacecraft in 1971 and was originally called Middle Spot. Its name formally became Pavonis Mons in 1973.
Using NASA Mars Global Surveyor  and Odyssey data, combined with developments in the study of glaciers, scientists suggest that glaciers once existed on Pavonis Mons and probably still do to some extent.  Evidence for this includes concentric ridges (moraines "dropped" by glaciers), a knobby area (caused by ice sublimating), and a smooth section that flows over other deposits (debris-covered glacial ice). The ice could have been deposited when the tilt of Mars changed the climate, thereby causing more moisture to be present in the atmosphere. Studies suggest the glaciation happened in the Late Amazonian period, the most recent period in Mars chronology. Multiple stages of glaciation probably occurred. The ice present today represents one more resource for possible future colonization of the planet.

The mission
Mars Global Surveyor (MGS) was an American robotic spacecraft developed by NASA's Jet Propulsion Laboratory and launched November 7, 1996. Mars Global Surveyor was a global mapping mission that examined the entire planet, from the ionosphere down through the atmosphere to the surface.  As part of the larger Mars Exploration Program, Mars Global Surveyor performed monitoring relay for sister orbiters during aerobraking, and it helped Mars rovers and lander missions by identifying potential landing sites and relaying surface telemetry.
It completed its primary mission in January 2001 and was in its third extended mission phase when, on 2 November 2006, the spacecraft failed to respond to messages and commands. A faint signal was detected three days later which indicated that it had gone into safe mode. Attempts to recontact the spacecraft and resolve the problem failed, and NASA officially ended the mission in January 2007.
The Mars Orbiter Camera (MOC) science investigation used 3 instruments: a narrow angle camera that took (black-and-white) high resolution images (usually 1.5 to 12 m per pixel) and red and blue wide angle pictures for context (240 m per pixel) and daily global imaging (7.5 km per pixel). MOC returned more than 240,000 images spanning portions of 4.8 Martian years, from September 1997 and November 2006.[6] A high resolution image from MOC covers a distance of either 1.5 or 3.1 km long. Often, a picture will be smaller than this because it has been cut to just show a certain feature. These high resolution images may cover features 3 to 10 km long. When a high resolution image is taken, a context image is taken as well. The context image shows the image footprint of the high resolution picture. Context images are typically 115.2 km square with 240 m/pixel resolution.

Thursday, March 15, 2018

SIF MONS BY NASA MAGELLAN MISSION




NASA MAGELLAN MISSION (1989-1994)
Sif Mons (2,000m / 2kms- 6561ft / 1, 24mi) 
Venus 

The volcano 
Sif Mons is a shield volcano located on the planet Venus at 22 ° N and 352.4 ° E, in the west of Eistla Regio. It is south of Sedna Planitia, west of Bereghinya Planitia and east of Guinevere Planitia. It is near Gula Mons, a little bigger and located further east in the extension of Eistla. Its lava flows are clearly visible even from Earth using the Arecibo radio telescope. The volcano is named after Sif, the northern goddess.

The photo
Sif Mons is displayed in this computer-simulated view of the surface of Venus. The viewpoint is located 360 kilometers (223 miles) north of Sif Mons at a height of 7.5 kilometers (4.7 miles) above the lava flows. Lave flows extend for hundreds of kilometers across the fractured plains shown in the foreground to the base of Sif Mons. The view is to the south. Sif Mons, a volcano with a diameter of 300 kilometers (186 miles) and a height of 2 kilometers (1.2 miles), appears in the upper half of the image. Magellan synthetic aperture radar data is combined with radar altimetry to produce a three-dimensional map of the surface. Rays, cast in a computer, intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory and is a single frame from a video released at the March 5, 1991, JPL news conference.

Sunday, February 18, 2018

EUROBEA MONS BY NASA VOYAGER 1 MISSION





NASA VOYAGER I MISSION (1977-2012)
Eurobea Montes (10, 500 m /34, 448 ft -  10, 5 km -  6,5 mi) 
Io (Jupiter's moon)

1.  In Voyager 1 view of Euboea Montes; the main massif is to upper right of center;  the dark oval to its lower left is Creidne Patera. North is at top,   from NASA's image PIA00328, 1 march 1979

 2  In Voyager 1 view of two of Io's ten highest peaks, Euboea Montes, just below upper left, and Haemus Montes, at lower right  © NASA's image PIA00328, 1 march 1979


The mountain 
Eurobea Montes (10, 500 m /34, 448 ft -  10, 5 km -  6,5 mi)  is a mountain on Io, on of the moons of Jupiter. Its coordinates are at 48.89°S 338.77°W.  Euboea Montes is rugby ball shaped (175 km by 240 km), located about 40 kilometers east of Creidne Patera caldera.  There is a curved ridge crest which divides Euboea Montes into two sections: the steep, southern flank with an uneven surface of rounded mounds and the smoother, northern flank sloping about 6° to the northwest. At the base of the northern flank is a thick, ridged deposit with rounded margins.
Schenk and Bulmer used their observations of NASA Voyager 1 images, measurements of heights on the digital elevation map generated from the images, and analogies to Earth structures to characterize Euboea Montes. According to them, the mountain is one block of crustal material, due to its polygonal, relatively intact shape. The block was raised and tilted (by about 6°) by thrust faulting. This uplift led to a massive landslide along the mountain's northern flank.
This scenario is directly tied to the recycling of Io's crust. Older crustal pieces are forced to sink as newer material is thrust above them. This old volcanic crustal material is compressed laterally as it sinks. Schenk and Bulmer argue that this global compression on Io is at least partially relieved by thrust faulting and uplift of large crustal blocks. On Earth, a similar mechanism exists, for example in the Black Hills of Dakota.
Schenk and M. H. Bulmer identify the deposit of a possible landslide off Euboea Montes. The thick deposit at the northern flank is interpreted to be from a landslide, and they further point to the shape of the northern flank as evidence for slope failure. The estimated volume of the debris apron is about 25,000 km3. If this is true, then Euboea Montes has arguably one of the largest debris aprons in the Solar System, of a size similar to those formed by landslides in Valles Marineris, around Olympus Mons on Mars, or submarine landslides on Earth.

The imager 
The Voyager program is a continuing American scientific program that employs two robotic probes, Voyager 1 and Voyager 2, to study the outer Solar System. They were launched in 1977 to take advantage of a favorable alignment of Jupiter, Saturn, Uranus, and Neptune, and are now exploring the outer boundary of the heliosphere in interstellar space. Although their original mission was to study only the planetary systems of Jupiter and Saturn, Voyager 2 continued on to Uranus and Neptune, and both Voyagers are now tasked with exploring interstellar space. Their mission has been extended three times, and both probes continue to collect and relay useful scientific data. Neither Uranus nor Neptune has been visited by any probe other than Voyager 2.
On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling "further than anyone, or anything, in history".
As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.
Data and photographs collected by the Voyagers' cameras, magnetometers, and other instruments revealed previously unknown details about each of the giant planets and their moons. Close-up images from the spacecraft charted Jupiter’s complex cloud forms, winds, and storm systems and discovered volcanic activity on its moon Io. Saturn’s rings were found to have enigmatic braids, kinks, and spokes and to be accompanied by a myriad of "ringlets." At Uranus Voyager 2 discovered a substantial magnetic field around the planet and 10 additional moons. Its flyby of Neptune uncovered three complete rings and six hitherto unknown moons as well as a planetary magnetic field and complex, widely distributed auroras. Voyager 2 is still the only spacecraft to have visited the ice giants.
The Voyager spacecrafts were built at the Jet Propulsion Laboratory in Southern California, and they were funded by the National Aeronautics and Space Administration (NASA), which also funded their launchings from Cape Canaveral, Florida, their tracking, and everything else concerning the space probes due the radioactive materials on board the spacecraft.

Wednesday, January 3, 2018

ASCRAEUS MONS SEEN BY NASA MARS RECONNAISSANCE ORBITER




NASA MARS RECONNAISSANCE ORBITER (2005-2015) 
Ascraeus mons (18, 225m / 18, 1 kms- 50, 793 ft / 11, 1mi) 
Planet Mars

1.  In Ascraeus monsHiRISE camera ,Mars Reconnaissance Orbiter (MRO); November 2010
2.  In  Colorized MOLA topography of Ascraeus Mons, 2006   


The mountain 
Ascraeus mons (18, 225m / 18kms- 50, 793 ft / 11, 1mi)  is a large shield volcano located in the Tharsis region of the planet Mars. It is the northernmost and tallest of three shield volcanoes collectively known as the Tharsis Montes. The volcano's location corresponds to the classical albedo feature Ascraeus Lacus.
Ascraeus Mons was discovered by the Mariner 9 spacecraft in 1971. The volcano was originally called North Spot because it was the northernmost of only four spots visible on the surface due to a global dust storm that was then enshrouding the planet. As the dust cleared, the spots were revealed to be extremely tall volcanoes whose summits had projected above the dust-laden, lower atmosphere.
The volcano is located in the southeast-central portion of the Tharsis quadrangle at 11.8°N, 255.5°E in Mars' western hemisphere.  Ascraeus Mons is roughly 480 km in diameter and is the second highest mountain on Mars, with a summit elevation of 18.1 km ! The volcano has a very low profile with an average flank slope of 7°. Slopes are steepest in the middle portion of the flanks, flattening out toward the base and near the top where a broad summit plateau and caldera (collapse crater) complex are located.
Volcanic vents, located on the northeastern and southwestern edges of the volcano, are sources for broad lava aprons, or fans, that bury nearby portions of the volcano and extend over 100 km out into the surrounding plains.  The southwest-northeast orientation of the aprons matches the orientation of the Tharsis Montes, suggesting that a major fissure or rift in the Martian crust is responsible for the orientation of both the aprons and the Tharsis Montes chain. The presence of the lava aprons causes some disagreement in the actual dimensions of the volcano.
Like most of the Tharsis region, Ascraeus Mons has a high albedo (reflectivity) and low thermal inertia, indicating that the volcano and surrounding areas are covered with large amounts of fine dust.  The dust forms a mantle over the surface that obscures or mutes much of the fine-scale topography and geology of the region. Tharsis is probably dusty because of its high elevations. The atmospheric density is too low to mobilize and remove dust once it is deposited.
Ascraeus Mons is surrounded by lava flow plains that are mid to late Amazonian in age. The elevation of the plains averages about 3 km above datum (Martian "sea" level), giving the volcano an average vertical relief of 15 km.  However, the elevation of the plains varies considerably. The plains northwest of the volcano are less than 2 km in elevation. The plains are highest (>3 km) southeast of the volcano.
The lava plains northwest of Ascraeus Mons are notable for having two dark collapse pits photographed by the HiRISE camera on the Mars Reconnaissance Orbiter (MRO) in November 2010 (image above) . The pits resemble those imaged around Arsia Mons by the Mars Odyssey spacecraft. The two pits measure about 180 and 310 m wide, and the larger pit is approximately 180 meters deep. The eastern walls of the pits consist of steep, overhanging ledges. The bottoms of both pits contain sediments and large boulders.  These rimless pit craters are believed to form by collapse of surface material into a subsurface void created either by a dike or lava tube. They are analogous to volcanic pit craters on Earth, such as the Devil's Throat crater on the upper east rift zone of Kilauea Volcano, Hawaii.  In some cases, they may mark skylights/entrances to subsurface lava caves.

The camera
The image above, has been captured by the HiRISE  (High Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter. The 65 kg (143 lb), $40 million USD instrument was built under the direction of the University of Arizona's Lunar and Planetary Laboratory by Ball Aerospace & Technologies Corp. It consists of a 0.5 m (19.7 in) aperture reflecting telescope, the largest so far of any deep space mission, which allows it to take pictures of Mars with resolutions of 0.3 m/pixel (about 1 foot), resolving objects below a meter across.
HiRISE has imaged Mars landers on the surface, including the ongoing Curiosity and Opportunity rover missions.
HiRISE was designed to be a High Resolution camera from the beginning. It consists of a large mirror, as well as a large CCD camera. Because of this, it achieves a resolution of 1 microradian, or 0.3 meter at a height of 300 km. (For comparison purposes, satellite images on Google Mars are available to 1 meter). It can image in three color bands, 400–600 nm (blue-green or B-G), 550–850 nm (red) and 800–1,000 nm (near infrared or NIR).
HiRISE incorporates a 0.5-meter primary mirror, the largest optical telescope ever sent beyond Earth's orbit. The mass of the instrument is 64.2 kg.
Red color images are at 20,048 pixels wide (6 km in a 300 km orbit), and Green-Blue and NIR are at 4,048 pixels wide (1.2 km). These are gathered by 14 CCD sensors, 2048 x 128 pixels. HiRISE's onboard computer reads out these lines in time with the orbiter's ground speed, meaning the images are potentially unlimited in height. Practically this is limited by the onboard computer's 28 Gbit (3.5 GByte) memory capacity. The nominal maximum size of red images (compressed to 8 bits per pixel) is about 20,000 × 126,000 pixels, or 2520 megapixels and 4,000 × 126,000 pixels (504 megapixels) for the narrower images of the B-G and NIR bands. A single uncompressed image uses up to 28 Gbit. However, these images are transmitted compressed, with a typical max size of 11.2 Gigabits. These images are released to the general public on the HiRISE website via a new format called JPEG 2000.
To facilitate the mapping of potential landing sites, HiRISE can produce stereo pairs of images from which the topography can be measured to an accuracy of 0.25 meter.
The HiRISE camera is designed to view surface features of Mars in greater detail than has previously been possible. It has provided a closer look at fresh martian craters, revealing alluvial fans, viscous flow features and ponded regions of pitted materials containing breccia clast.  This allows for the study of the age of Martian features, looking for landing sites for future Mars landers, and in general, seeing the Martian surface in far greater detail than has previously been done from orbit. By doing so, it is allowing better studies of Martian channels and valleys, volcanic landforms, possible former lakes and oceans, and other surface landforms as they exist on the Martian surface.
The general public is allowed to request sites for the HiRISE camera to capture (see HiWish). For this reason, and due to the unprecedented access of pictures to the general public, shortly after they have been received and processed, the camera has been termed "The People's Camera".
 The pictures can be viewed online, downloaded, or with the free HiView software.

Wednesday, March 1, 2017

IAPETUS RIDGE BY NASA CASSINI MISSION



NASA CASSINI MISSION (1997-2017)
Iapetus equatorial ridge (20,000 m - 65,6168 ft)  or (20 km - 12, 43 mi)
Saturn planet (Iapetus moon) 

1. Iapetus equatorial ridge on 10/09/2007 
2. Photomosaic of the Iapetus moon  from NASA Cassini Spacecraft  on 31/12/2004
Assembled by Matt McIrvin  

The mountain 
Iapetus is one of the numerous Saturn's moon which has a 10 to 20 kilometers high (20,000 m - 65,6168 ft)  ridge above the surrounding plains, running along most of its equator, making them some of the tallest mountains in the Solar System.  Iapetus's equatorial ridge was discovered when the NASA Cassini spacecraft imaged Iapetus on 31 December 2004, during the NASA Cassini Mission to Saturn.  The ridge forms a complex system including isolated peaks, segments of more than 200 km and sections with three near parallel ridges. There are bright areas on the sides of the equatorial ridge near Iapetus's bright trailing hemisphere, which were already visible in Voyager Missions images appearing like mountains and were nicknamed the "Voyager Mountains". Within the bright regions there is no ridge, but there are a series of isolated 10 km (6 miles) peaks along the equator. The ridge system is heavily cratered, indicating that it is ancient. 
The prominent equatorial bulge gives Iapetus a walnut-like appearance. 
It is not clear how the ridge formed. One difficulty is to explain why it follows the equator almost perfectly. There are at least four current hypotheses, but none of them explains why the ridge is confined to Cassini Regio.
1. A team of scientists associated with the Cassini mission have argued that the ridge could be a remnant of the oblate shape of the young Iapetus, when it was rotating more rapidly than it does today.  The height of the ridge suggests a maximum rotational period of 17 hours. 
2. The ridge could be icy material that welled up from beneath the surface and then solidified. 
3. Iapetus may have had a ring system during its formation due to its large Hill sphere, and the equatorial ridge could have then been produced by collisional accretion of this ring.
4. The ridge and the bulge could be the result of ancient convective overturn. This hypothesis states that the bulge is in isostatic equilibrium typical for terrestrial mountains. 
Source:

The Mission
Cassini sails low over the surface of Iapetus on approach to its close encounter with the enigmatic moon on Sept. 10, 2007. Its flight takes it over the rugged, mountainous ridge along the moon's equator, where ancient, impact battered peaks - some topping 10 kilometers (6 miles) in height -- are seen rising over the horizon and slipping beneath the spacecraft as it flies.
Frames used in this movie were acquired with the Cassini wide-angle camera on Sept. 10, 2007, as the intrepid robot soared past Iapetus (1,468 kilometers - 912 miles across), within a few thousand kilometers of the surface. Additional simulated images were inserted between the Cassini images in this movie in order to smooth the appearance of the movement, a scheme called interpolation.
The Cassini mission was launched on  October 15, 1997 at 8:43 UTC. This 20 years mission was programmed to end on September 15, 2017 by what is called The Grande Finale.
Source:
NASA Cassini mission Page at Iapetus  

Thursday, February 9, 2017

SKADI MONS BY NASA MAGELLA MISSION



NASA MAGELLAN MISSION (1989-1994)
Skadi Mons (11, 500m or 11, 5 km -  37,730 ft or 7 miles) 
Venus planet (Maxwell Montes)

Photographed on 7 march 1996  

The mountain 
Skadi Mons 10,700m or 10, 7 km -  35,105 ft or 6, 65 mi) is a mountain on planet Venus, in Maxwell Montes, at the center of Ishtar Terra. It is the highest point of the planet with an altitude of about 10,700 meters above the mean planetary radius. On this image it is located along the right hand part. 
Maxwell Montes is a mountain massif on the planet Venus, located on Ishtar Terra, the more northern of the planet's two major highlands. The western slopes are very steep, whereas the eastern slopes descend gradually into Fortuna Tessera. Due to its elevation it is the coolest (about 380 °C or 716 °F) and least pressurised (about 45 bar or 44 atm) location on the surface of Venus. 
By using radar to probe through the permanent and thick clouds in the Venusian atmosphere and make observations of the surface, scientists at the American Arecibo Radio Telescope in Puerto Rico discovered the extensive highland on Venus that came to be called Maxwell Montes in 1967.
In 1978, the space probe Pioneer Venus 1 went into orbit around Venus for the purpose of making radar observations of the Venusian surface. These observations made possible the creation of the first topographic map of the surface of Venus, and confirmed that a point within Maxwell Montes is the highest point above the average level of the planet's surface.
Maxwell Montes, Alpha Regio, and Beta Regio are the three exceptions to the rule that the surface features of Venus are to be named for females.
Maxwell Montes is named for James Clerk Maxwell whose work in mathematical physics predicted the existence of radio waves, which made radar, and thus the surface observations of Venus, possible.
The name, originally given by Ray Jurgens in 1970 on the urging of Tommy Gold, was approved by the International Astronomical Union's Working Group for Planetary System Nomenclature (IAU/WGPSN) between 1976 and 1979.
Source: 
- NASA Jet Propulsion Laboratory / CalTech

The image capturer
This Magellan full resolution radar image is centered at 65 degrees north latitude, zero degrees east longitude, along the eastern edge of Lakshmi Planum and the western edge of Maxwell Montes and its highest peak,  Skadi Mons. The plains of Lakshmi are made up of radar-dark, homogeneous, smooth lava flows. Maxwell is made up of parallel ridges 2 to 7 km (1.2 to 4.2 miles) apart and is interpreted to have formed by compressional tectonics. The image is 300 km (180 miles) wide.
The Magellan spacecraft, named after the 16th century Portuguese explorer whose expedition first circumnavigated the Earth, was launched May 4, 1989, and arrived at Venus on August 10, 1990. Magellan's solid rocket motor placed it into a near-polar elliptical orbit around the planet. During the first 8-month mapping cycle around Venus, Magellan collected radar images of 84% of the planet's surface, with resolution 10 times better than that of the earlier Soviet Venera 15 and 16 missions. Altimetry and radiometry data also measured the surface topography and electrical characteristics.
During the extended mission, two further mapping cycles from May 15, 1991 to September 14, 1992 brought mapping coverage to 98% of the planet, with a resolution of approximately 100m.
Precision radio tracking of the spacecraft will measure Venus' gravitational field to show the planet's internal mass distribution and the forces which have created the surface features. Magellan's data will permit the first global geological understanding of Venus, the planet most like Earth in our solar system.
Magellan Synthetic Aperture Radar (SAR) data is combined with radar altimetry to develop a three-dimensional map of the surface. The vertical scale in this perspective has been exaggerated 22.5 times. Rays cast in a computer intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey, are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory.
Source: 

Thursday, January 12, 2017

OLYMPUS MONS (MARS) BY NASA VIKING PROGRAM



NASA VIKING PROGRAM (1975-1982)
Olympus Mons (21, 230m -  69,650ft) 
Planet Mars - Solar system  

1.  Image of Olympus Mons from NASA Viking 1 Orbiter in 1974 
2.  Olumpus Mons caldera from Mars Express camera on 26 May 2004 


The mountain 
Olympus Mons (21, 230m -  69,650 ft) is a very large shield volcano located on the planet Mars. By one measure, it has a height of nearly 22 km (13.6 mi). Olympus Mons stands about two and a half times as tall as Mount Everest's height above sea level. It is the youngest of the large volcanoes on Mars, having formed during Mars's Hesperian Period. It is currently the largest volcano discovered in the Solar System and had been known to astronomers since the late 19th century as the albedo feature Nix Olympica (Latin for "Olympic Snow"). Its mountainous nature was suspected well before space probes confirmed its identity as a mountain.
The volcano is located in Mars's western hemisphere at approximately 18.65°N 226.2°E, just off the northwestern edge of the Tharsis bulge. The western portion of the volcano lies in the Amazonis quadrangle (MC-8) and the central and eastern portions in the adjoining Tharsis quadrangle (MC-9).
Two impact craters on Olympus Mons have been assigned provisional names by the International Astronomical Union. They are the 15.6 km (9.7 mi)-diameter Karzok crater (18°25′N 131°55′W) and the 10.4 km (6.5 mi)-diameter Pangboche crater (17°10′N 133°35′W). The craters are notable for being two of several suspected source areas for shergottites, the most abundant class of Martian meteorites.
Olympus Mons and a few other volcanoes in the Tharsis region stand high enough to reach above the frequent Martian dust-storms recorded by telescopic observers as early as the 19th century. The astronomer Patrick Moore pointed out that Schiaparelli (1835–1910) "had found that his Nodus Gordis and Olympic Snow [Nix Olympica] were almost the only features to be seen" during dust storms, and "guessed correctly that they must be high".
The Mariner 9 spacecraft arrived in orbit around Mars in 1971 during a global dust-storm. The first objects to become visible as the dust began to settle, the tops of the Tharsis volcanoes, demonstrated that the altitude of these features greatly exceeded that of any mountain found on Earth, as astronomers expected. Observations of the planet from Mariner 9 confirmed that Nix Olympica was not just a mountain, but a volcano. Ultimately, astronomers adopted the name Olympus Mons for the albedo feature known as Nix Olympica.

The program
The Viking program consisted of a pair of American space probes sent to Mars, Viking 1 and Viking 2. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.
The Viking program grew from NASA's earlier, even more ambitious, Voyager Mars program, which was not related to the successful Voyager deep space probes of the late 1970s. Viking 1 was launched on August 20, 1975, and the second craft, Viking 2, was launched on September 9, 1975, both riding atop Titan III-E rockets with Centaur upper stages. Viking 1 entered Mars orbit on June 19, 1976, with Viking 2 following suit on August 7.
After orbiting Mars for more than a month and returning images used for landing site selection, the orbiters and landers detached; the landers then entered the Martian atmosphere and soft-landed at the sites that had been chosen. The Viking 1 lander touched down on the surface of Mars on July 20, 1976, and was joined by the Viking 2 lander on September 3. The orbiters continued imaging and performing other scientific operations from orbit while the landers deployed instruments on the surface.
The project cost roughly 1 billion USD in 1970s dollars, equivalent to about 11 billion USD in 2016 dollars. It was highly successful and formed most of the body of knowledge about Mars through the late 1990s and early 2000s.
Source :
 - NASA- JPL-CALTECH

Friday, November 18, 2016

BOÖSAULE MONTES AND PELE IMAGED BY NASA VOYAGER 1




NASA VOYAGER I MISSION (1977-2012)
Boösaule Montes (17, 500 m or 17, 5 km - 57, 400 ft or 10, 9 miles) 
Io (Jupiter's moon) - Solar system 

as imaged by Voyager I Mission in March 1979 
© NASA / Jet Propulsion Lab / USGS 

NASA comment for images
Image 1 :  " The eruption of Pele on Jupiter's moon Io. The volcanic plume rises 300 kilometers above the surface in an umbrella-like shape. The plume fallout covers an area the size of Alaska. The vent is a dark spot just north of the triangular-shaped plateau (right center). To the left, the surface is covered by colorful lava flows rich in sulfur. "
Image 2  :  detail from image 1: Boösaule Montes on the left side of image

The mountain
Boösaule Montes (17, 500 m or 17, 5 km - 57, 4147 ft or 10, 9 miles)  is the highest mountain of Jupiter's moon Io, and one of the tallest mountains in the Solar System. It is located in the north-west from the volcano Pele ( on right in the first image), in the mountain range Boösaule.
The highest (southern) peak of the Boösaule Montes, which is the highest peak on Io, as imaged by Voyager 1. North is to the upper left. This image was created from PIA00323 by cropping and sharpening. NASA's description of the uncropped image is as follows:
The official name of the mountain range was given in honor of the cave in Egypt where Io gave birth to Epaphus, and approved by the IAU in 1985.
Mountains are widely distributed across the surface of Io, the innermost large moon of Jupiter. There are about 115 named mountains; the average length is 157 km (98 mi) and the average height is 6,300 m (20,700 ft). The longest is 570 km (350 mi), and the highest is Boцsaule Montes, at 17,500 metres (57,400 ft), taller than any mountain on Earth. Ionian mountains often appear as large, isolated structures; no global tectonic pattern is evident, unlike on Earth, where plate tectonics is dominant.
Io is exceptional for the strong tidal heating it undergoes, caused by the eccentricity of its orbit (which results from its resonance with Europa and Ganymede) in conjunction with the proximity and great mass of Jupiter. This leads to widespread and intensive volcanism. Most volcanoes on Io have little relief; those that can be considered mountains are generally smaller than the mountains formed by tectonic processes, averaging only 1,000 to 2,000 metres (3,300 to 6,600 ft) in height and 40 to 60 kilometres (25 to 37 mi) in width. Several geodynamic models of Io exist but the tectonic mountain-building process is still obscure and debatable. However, it is thought to be related to stresses caused by the rapid volcanic resurfacing of the body.
To explore the origin of Io's mountains, classification of morphological types and description of morphological features are necessary. Five morphological types of mountains have been identified.
- Mesa: a mountain with flat top and relatively smooth surface. It may be difficult to distinguish mesas from eroded layered plains. Ethiopia Planum is a good example of this morphological type.
1 mountains on Io are classified as mesas.
- Plateau : an elevated plain with a rugged surface. There is no steep or prominent peak on plateau. Iopolis Planum is a good example of this type. About 46% of Ionian mountains belong to this morphological type.
- Ridge: an elevated structure dominated by one or more linear or arcuate rises. 28 mountains on Io (or 24%) have been cataloged into this type.
- Massif: an elevated structure dominated by rugged or complex surface and has one or more peaks. Boösaule Montes and Tohil Mons are good examples.
Sources :  
- Io mountains database
- NASA
Jet Propulsion Laboratory 

The imager 
The Voyager program is a continuing American scientific program that employs two robotic probes, Voyager 1 and Voyager 2, to study the outer Solar System. They were launched in 1977 to take advantage of a favorable alignment of Jupiter, Saturn, Uranus, and Neptune, and are now exploring the outer boundary of the heliosphere in interstellar space. Although their original mission was to study only the planetary systems of Jupiter and Saturn, Voyager 2 continued on to Uranus and Neptune, and both Voyagers are now tasked with exploring interstellar space. Their mission has been extended three times, and both probes continue to collect and relay useful scientific data. Neither Uranus nor Neptune has been visited by any probe other than Voyager 2.
On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling "further than anyone, or anything, in history".
As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.
Data and photographs collected by the Voyagers' cameras, magnetometers, and other instruments revealed previously unknown details about each of the giant planets and their moons. Close-up images from the spacecraft charted Jupiter’s complex cloud forms, winds, and storm systems and discovered volcanic activity on its moon Io. Saturn’s rings were found to have enigmatic braids, kinks, and spokes and to be accompanied by a myriad of "ringlets." At Uranus Voyager 2 discovered a substantial magnetic field around the planet and 10 additional moons. Its flyby of Neptune uncovered three complete rings and six hitherto unknown moons as well as a planetary magnetic field and complex, widely distributed auroras. Voyager 2 is still the only spacecraft to have visited the ice giants.
The Voyager spacecrafts were built at the Jet Propulsion Laboratory in Southern California, and they were funded by the National Aeronautics and Space Administration (NASA), which also funded their launchings from Cape Canaveral, Florida, their tracking, and everything else concerning the space probes due the radioactive materials on board the spacecraft.