Sunday, October 16, 2022

PHLEGRA MONTES PHOTOGRAPHED BY ESA MARS EXPRESS MISSION


MARS EXPRESS MISSION ( 2004-2022) Phlegra Montes (1,4km - 870 mi) Mars (Solar system)

ESA MARS EXPRESS MISSION ( 2004-2022)
Phlegra Montes (1,4km - 870 mi)
Mars (Solar system)

 

About that image
The High-Resolution Stereo Camera on ESA’s Mars Express collected the data for these images on 1 June 2011 during orbit 9465. This perspective view has been calculated from the Digital Terrain Model derived from the stereo channels.
Courtesey ESA/DLR/FU Berlin (G. Neukum),CC BY-SA 3.0 IGO


The mountains
The Phlegra Montes are a system of eroded Hesperian–Noachian-aged massifs and knobby terrain in the mid-latitudes of the northern lowlands of Mars, extending northwards from the Elysium Rise towards Vastitas Borealis for nearly 1,400 km (870 mi). The mountain ranges separate the large plains provinces of Utopia Planitia (west) and Amazonis Planitia (east), and were named in the 1970s after a classical albedo feature. The massif terrains are flanked by numerous parallel wrinkle ridges known as the Phlegra Dorsa. The mountain ranges were first mapped against imagery taken during NASA's Viking program in the 1970s, and the area is thought to have been uplifted due to regional-scale compressive stresses caused by the contemporary formations of the Elysium and Tharsis volcanic provinces. Recent research has unveiled the presence of extensive thrust faulting bounding the massif terrains. Since the 2010s, researchers have proposed the presence of a significant late Amazonian glaciation event along the Martian northern mid-latitudes, citing the presence of lineated valley fills, lobate debris aprons, and concentric crater fills. The presence of ring mold craters imply that significant stores of water ice may continue to persist in these terrains. Features interpreted as eskers have been observed in the southern Phlegra Montes. However, whether this glaciation was localized or of regional scale remains subject to debate in the scientific community.

About the mission
Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. "Express" originally referred to the speed and efficiency with which the spacecraft was designed and built.However, "Express" also describes the spacecraft's relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years. Mars Express consists of two parts, the Mars Express Orbiter and Beagle 2, a lander designed to perform exobiology and geochemistry research. Although the lander failed to fully deploy after it landed on the Martian surface, the orbiter has been successfully performing scientific measurements since early 2004, namely, high-resolution imaging and mineralogical mapping of the surface, radar sounding of the subsurface structure down to the permafrost, precise determination of the atmospheric circulation and composition, and study of the interaction of the atmosphere with the interplanetary medium. Due to the valuable science return and the highly flexible mission profile, Mars Express has been granted several mission extensions. The latest was approved on 1 October 2020 and runs until 31 December 2022. Some of the instruments on the orbiter, including the camera systems and some spectrometers, reuse designs from the failed launch of the Russian Mars 96 mission in 1996 (European countries had provided much of the instrumentation and financing for that unsuccessful mission). The design of Mars Express is based on ESA's Rosetta mission, on which a considerable sum was spent on development. The same design was also used for ESA's Venus Express mission in order to increase reliability and reduce development cost and time. Because of these redesigns and repurposings, the total cost of the project was about $345 million- less than half of comparable U.S. missions. Arriving at Mars in 2003, 18 years, 9 months and 10 days ago (and counting), it is the second longest surviving, continually active spacecraft in orbit around a planet other than Earth, behind only NASA's still active 2001 Mars Odyssey.

______________________________
2022- Wandering Vertexes
A blog by Francis Rousseau

No comments:

Post a Comment